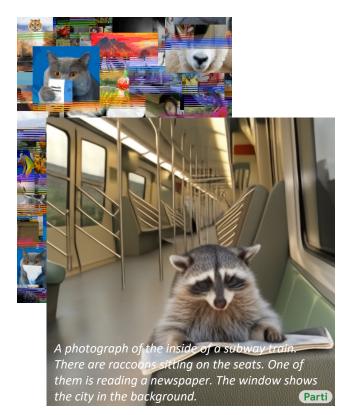


Image Editing with Optimization (part II)

Jun-Yan Zhu 16-726 Spring 2025

Large-scale Text-to-Image Models

Diffusion models (DALL-E 2, Imagen, SD)



Autoregressive models (Image GPT, Parti)

GANs, Masked GIT (GigaGAN, MUSE)

Limitations of Text-to-Image Models

Linguistic bottleneck: not everything can be described by text

Data bottleneck: many things are not included in the dataset:

Not in the public domains (e.g., personal concepts)
 Have not been created (e.g., new concepts)

Text-to-image isn't perfect...

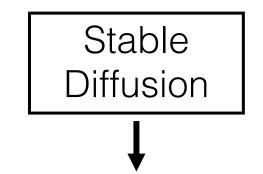


Photo of a moongate

Text-to-image isn't perfect...

Actual moongate images

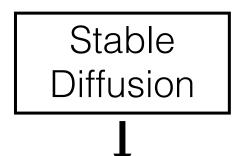


Photo of a moongate

Text-to-image isn't perfect...

Actual moongate images

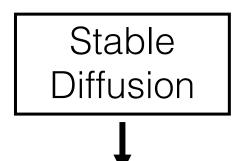


Photo of a moongate

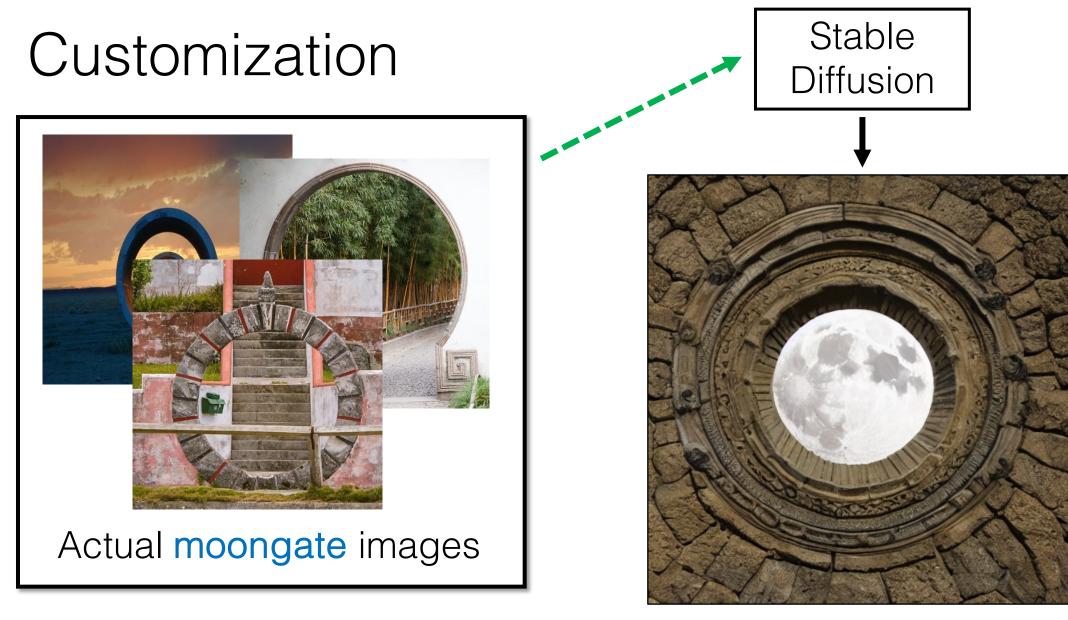


Photo of a moongate

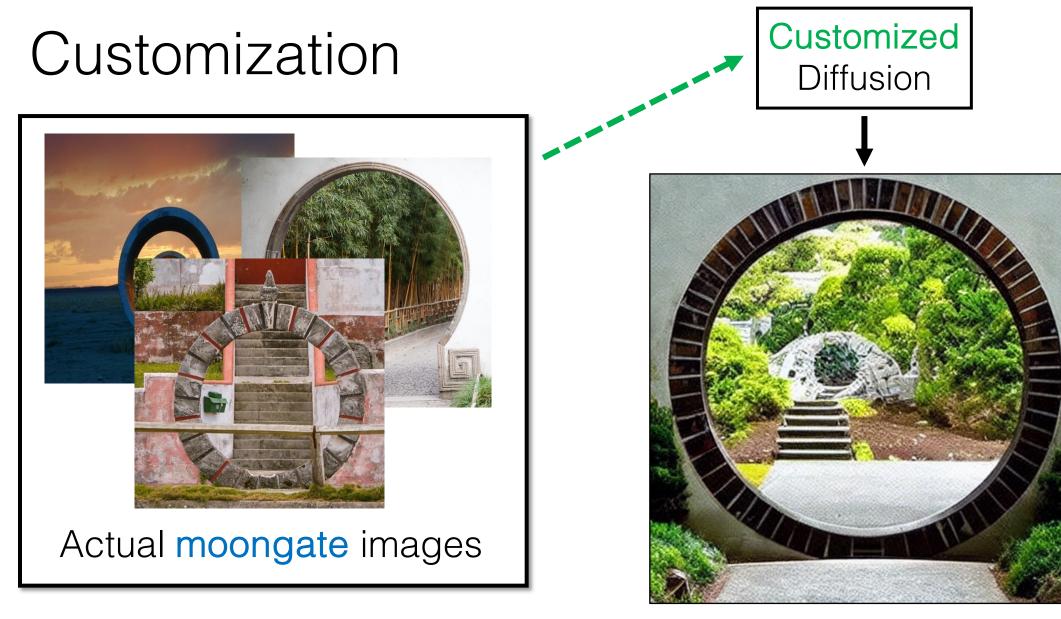
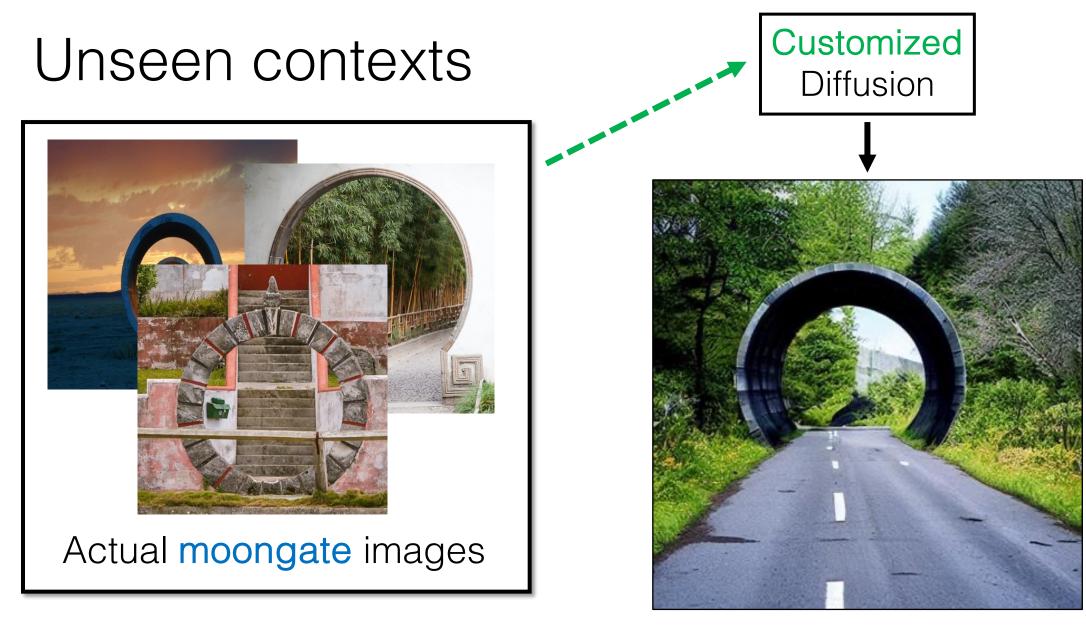
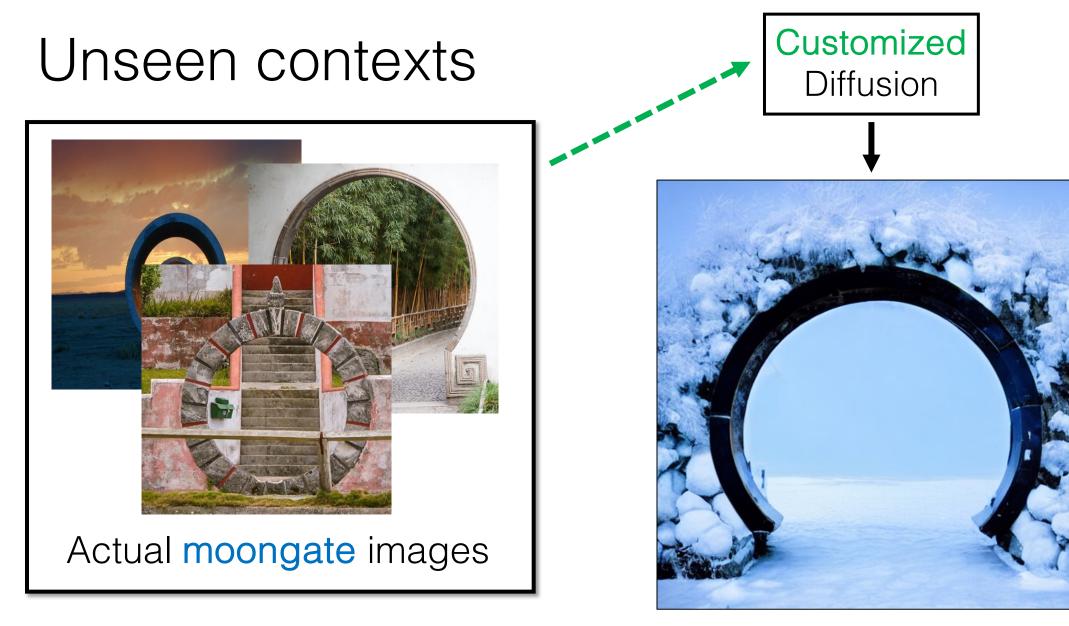


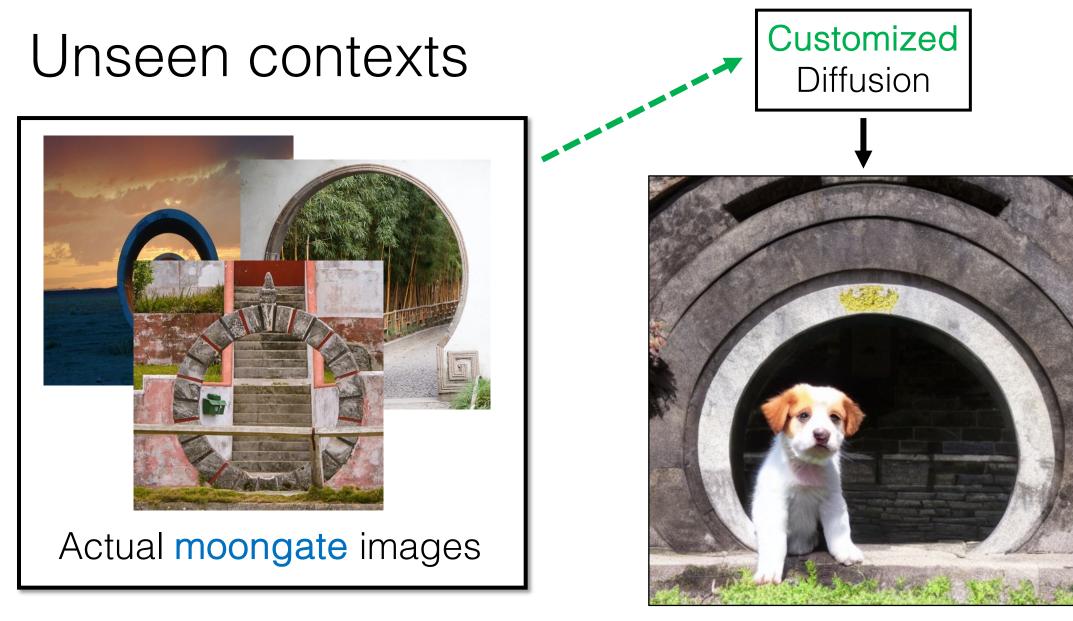
Photo of a moongate



Moongate in the middle of highway

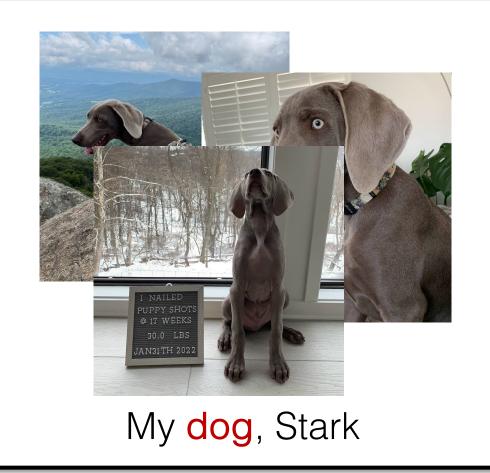


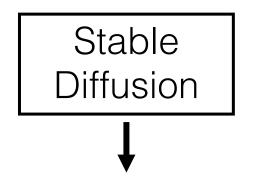
Moongate in snowy ice



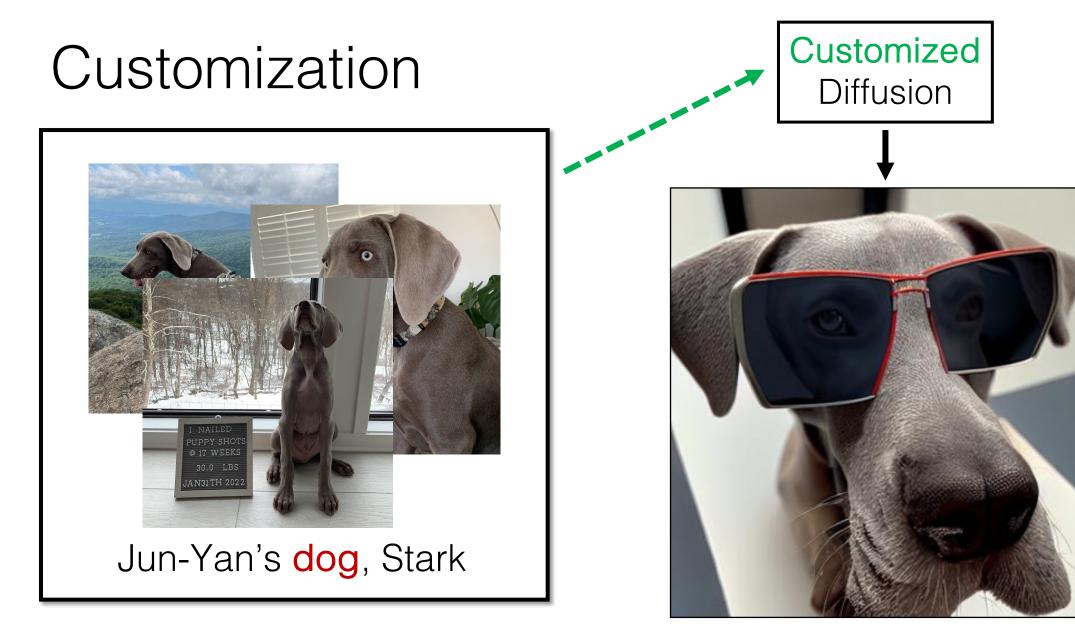
A puppy in front of Moongate

No knowledge of personal concepts

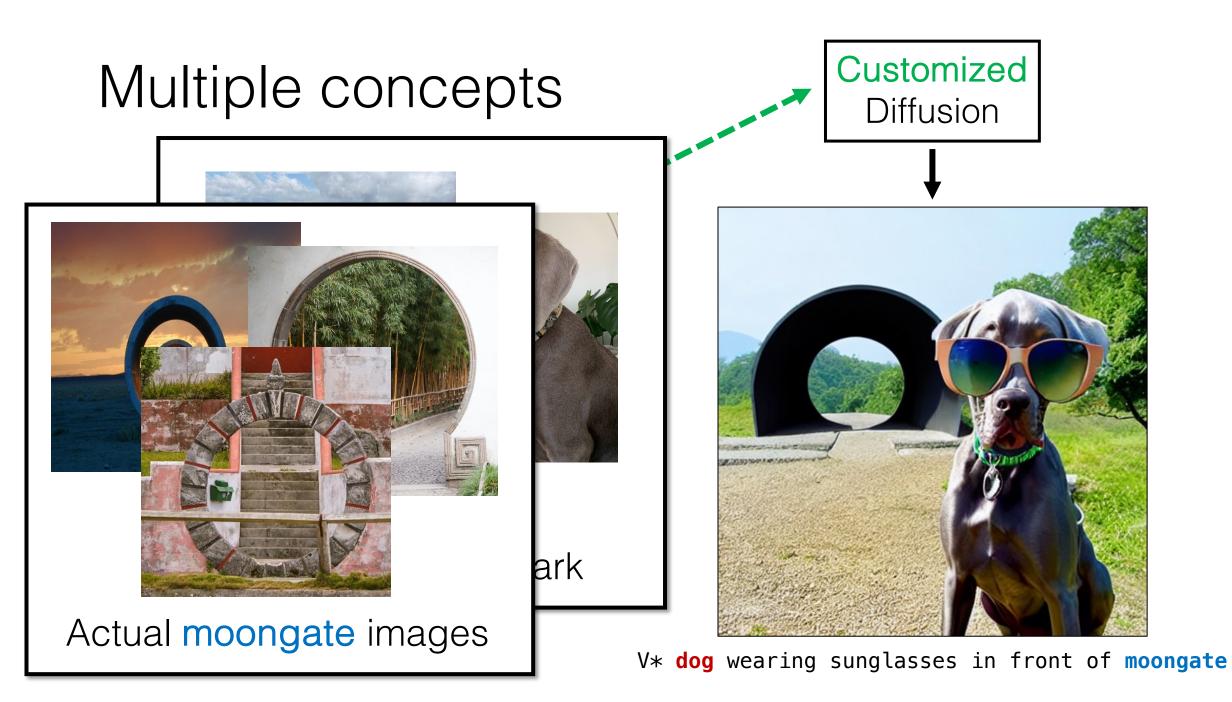




A dark grey color weimaraner dog

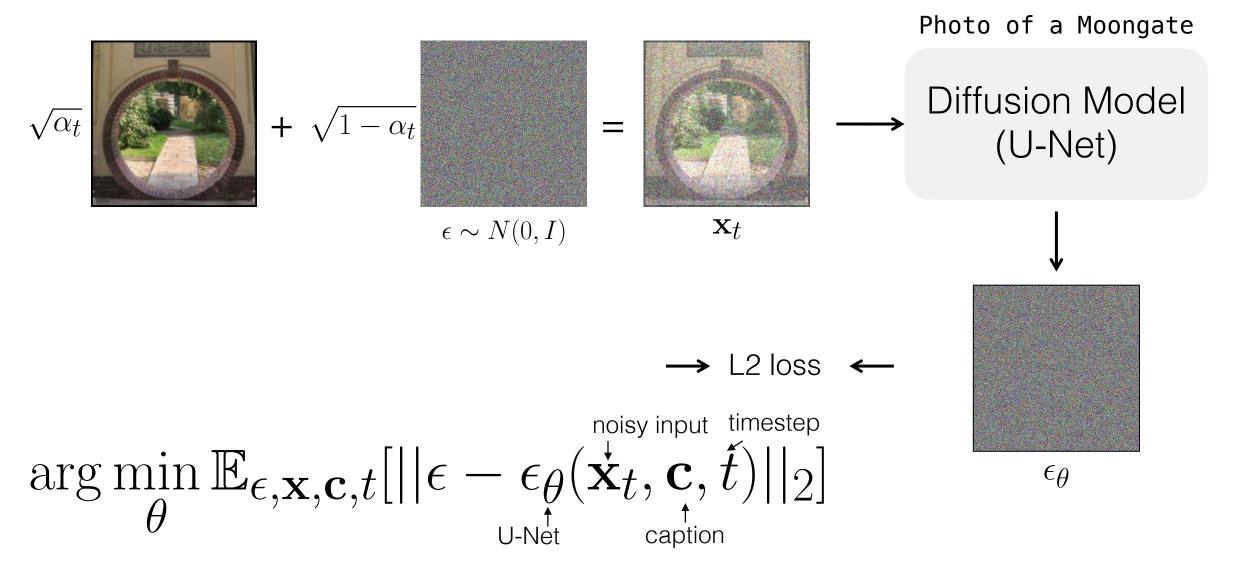


V* **dog** wearing sunglasses



Diffusion Model Quick Recap

Diffusion model training



Which parts shall we customize?

Textual Inversion: Optimizing Text Embedding

Textual Inversion: Optimizing Text Embedding

Input samples \xrightarrow{invert} "S_{*}"

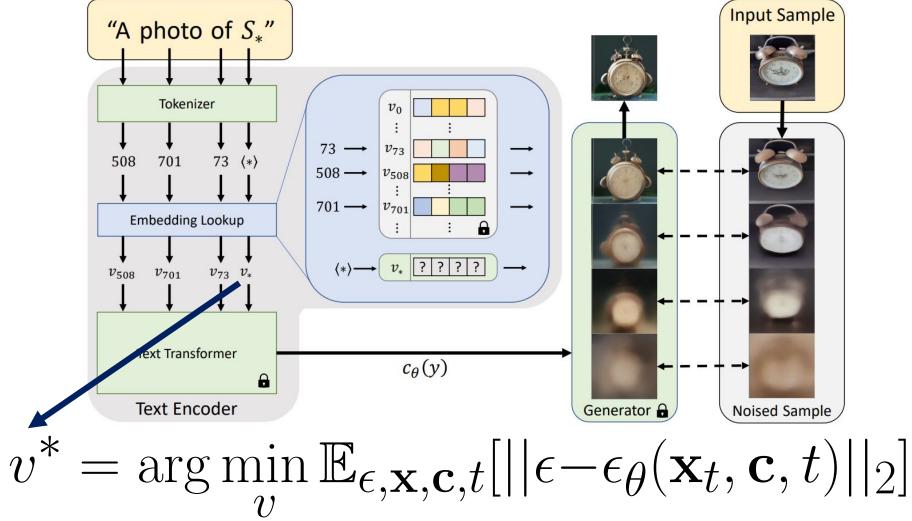
 \rightarrow

"Painting of two S_* fishing on a boat"

"A S_* backpack"

"Banksy art of S_* " "A S_* themed lunchbox"

Textual Inversion: Optimizing Text Embedding



GANs inversion [Zhu et al., 2016] and soft prompting [Lester et al., 2021] [Rinon Gal et

Textual Inversion Results

Input samples

 \rightarrow

 \rightarrow

"S* sports car"

"S_{*} made of lego"

"S* onesie"

"da Vinci sketch of S_* "

Input samples

"Manga drawing of a steaming S_* "

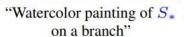
"A S_* watering can"

" S_* Death Star"

"A poster for the movie "The Teapot" starring S_* "

Textual Inversion Results

Input samples



ting of S_* "A house in the style of S_* " ch"

"Grainy photo of S_* in angry birds"

"S* made of chocolate"

[Rinon Gal et al., ICLR 2023]

Works well for artistic styles

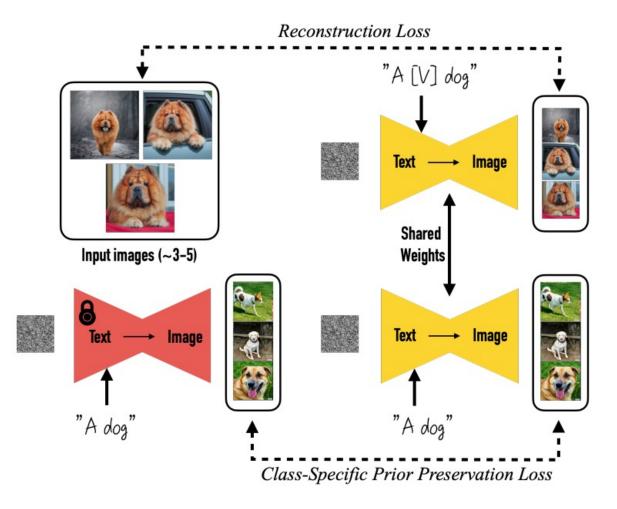
Cannot preserve object identity

Target images

S* cat swimming in a pool

How to improve identity preservation?

DreamBooth: Fine-tuning all the weights



Training Objective

$$\Delta \theta^* = \arg \min_{\Delta \theta} \mathbb{E}_{\epsilon, \mathbf{x}, \mathbf{c}, t}[||\epsilon - \epsilon_{\theta}(\mathbf{x}_t, \mathbf{c}, t)||_2]$$

where $\theta = \theta_0 + \Delta \theta$

Issues (Overfitting)

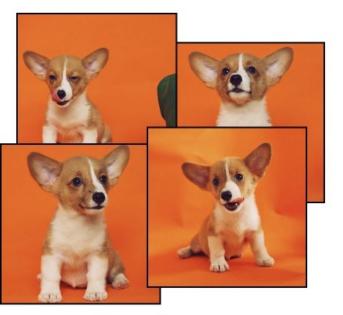
- Forget to generate subjects of the same class (e.g., dog)
- Reduce output diversity

Regularization

Add synthetic images of the same class.

Inspired by single-image GAN fine-tuning GANPaint [Bau et al., 2019], PTI [Roich et al., 2021]

DreamBooth Results



Input images

in the Acropolis

swimming

in a doghouse

in a bucket

getting a haircut

DreamBooth Results

Input images

A [V] backpack in the Grand Canyon

A wet [V] backpack in water

A [V] backpack in Boston

A [V] backpack with the night sky

Input images

A [V] teapot floating in milk

A transparent [V] teapot with milk inside

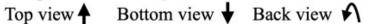
A [V] teapot pouring tea

A [V] teapot floating in the sea

DreamBooth Applications

Text-guided view synthesis

Input images

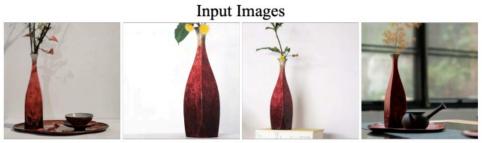


Art Renditions Van Gogh Michelangelo Va

Vermeer

Property Modification Panda Lion

DreamBooth vs. Textual Inversion



DreamBooth (Imagen)

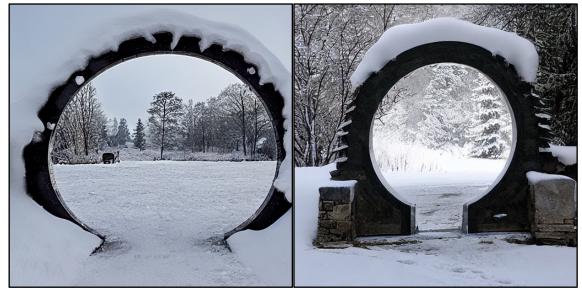
DreamBooth (Stable Diffusion)

Textual Inversion (Stable Diffusion)

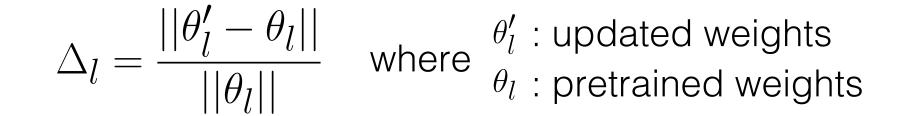
Fine-tuning all model weights

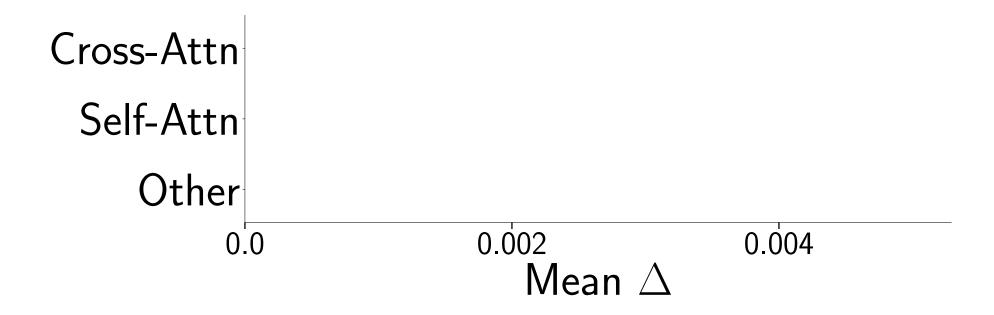
Photo of a moongate

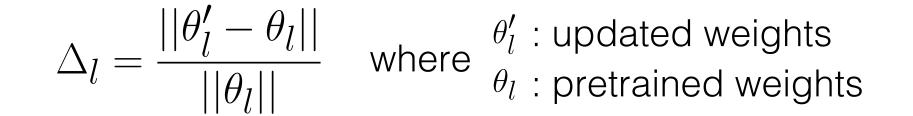
Moongate in snowy ice

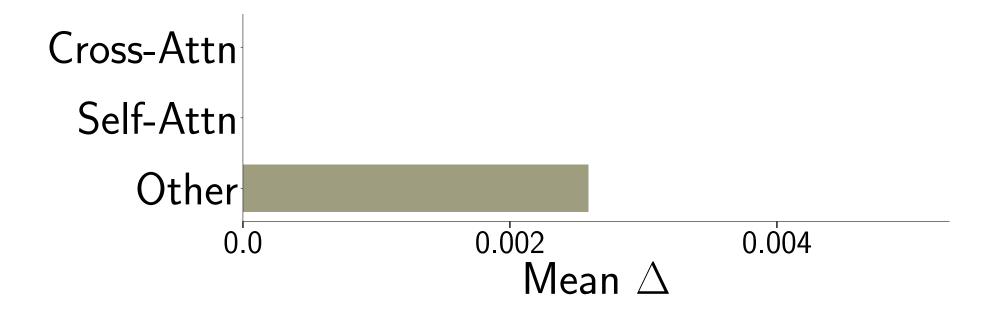


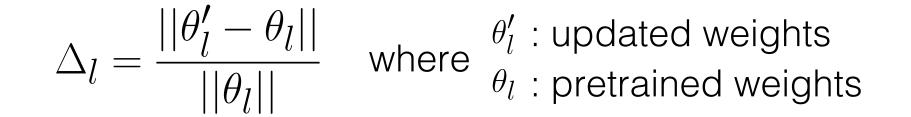
Storage requirement. 4GB storage for each fine-tuned model. Compute requirement. It requires more VRAM/training time. Compositionality. Hard to combine multiple models.

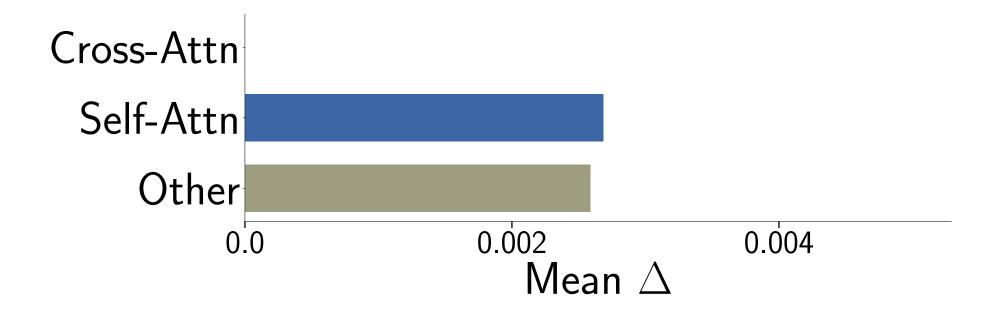


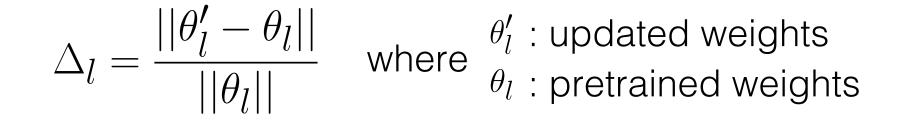


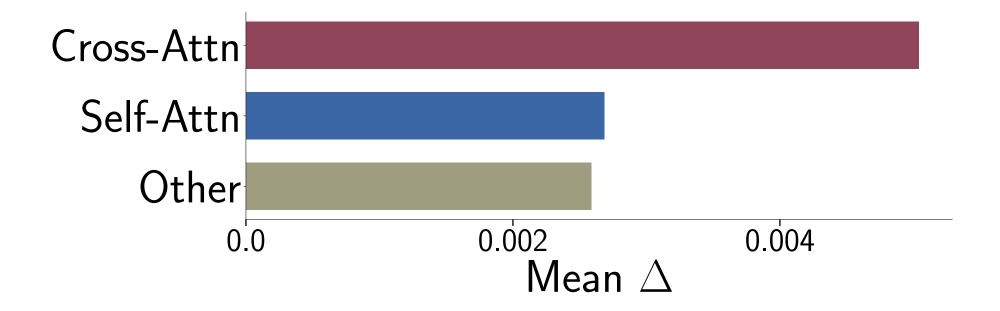




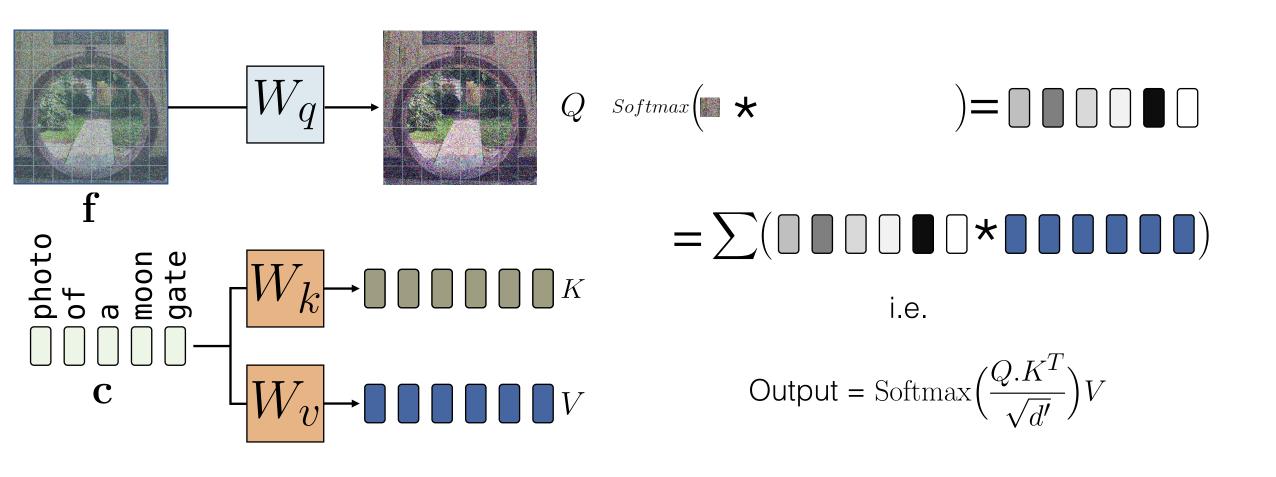




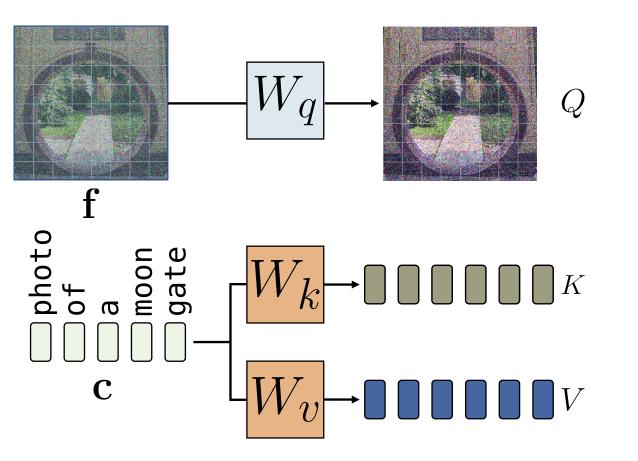




Text-image Cross-Attention



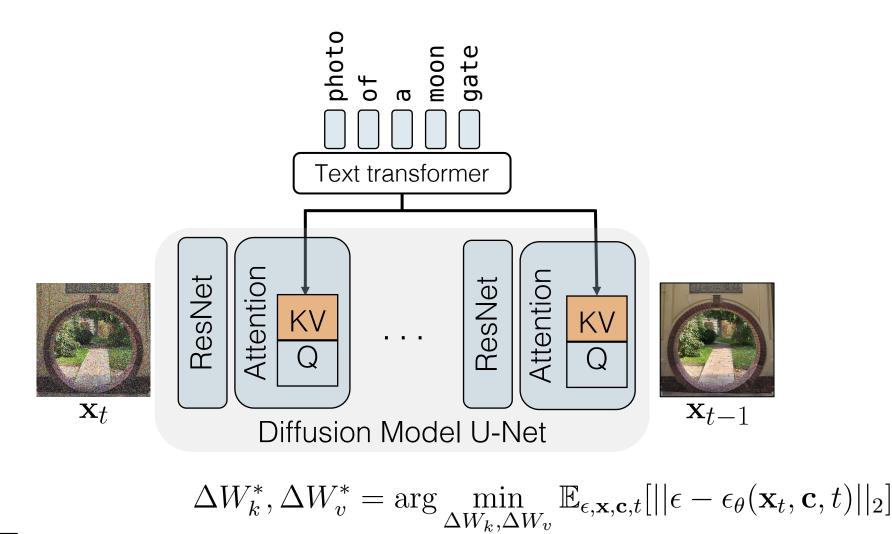
Text-image Cross-Attention



Text features only input to W_k and W_v

Trainable Frozen

Only fine-tune cross-attention layers



Trainable

Frozen

Generated samples for target concept

Photo of a moongate

Pretrained Model

Fine-tuned Model

Generated samples for similar concepts

Photo of a moon

Pretrained Model

Fine-tuned Model

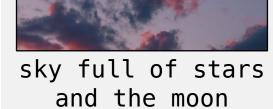
How to prevent overfitting?

Photo of a {moongate}

Photo of a {moongate}

Target images

. . .



Blood moon

Add regularization images

. . .

Generated samples for similar concepts

Photo of a moon

Pretrained Model

Fine-tuned Model

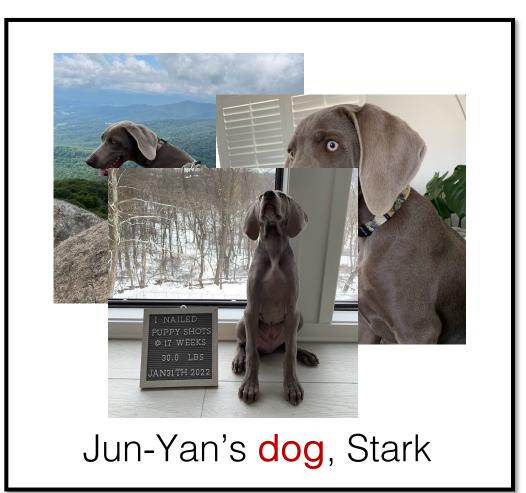
Generated samples for similar concepts

Photo of a moon

Pretrained Model

Fine-tuned Model

Personalized concepts



How to describe personalized concepts?

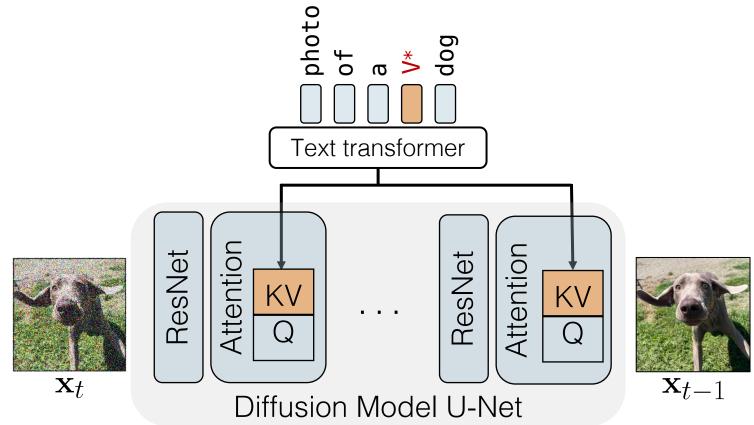
V* dog

Where V* is a modifier token in the text embedding space

Proposed by Textual Inversion [Rinon Gal et al.]

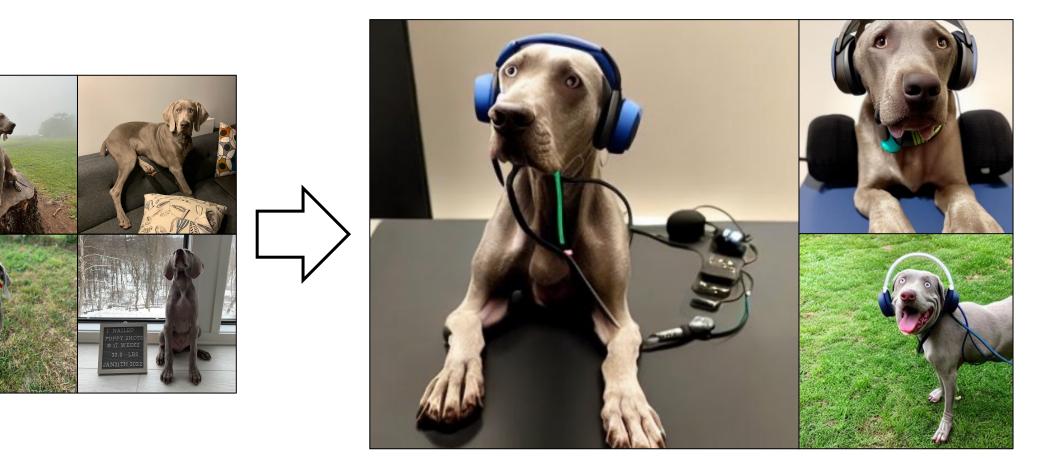
Personalized concepts

Also fine-tune the modifier token V^* that describes the personalized concept



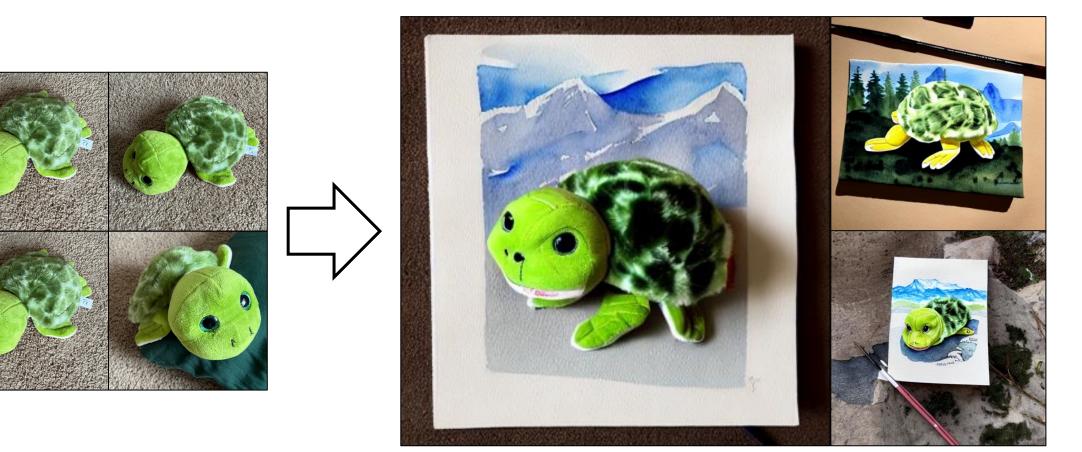
Trainable 🦳 Frozen

Single concept results



V* dog wearing headphones

Single concept results

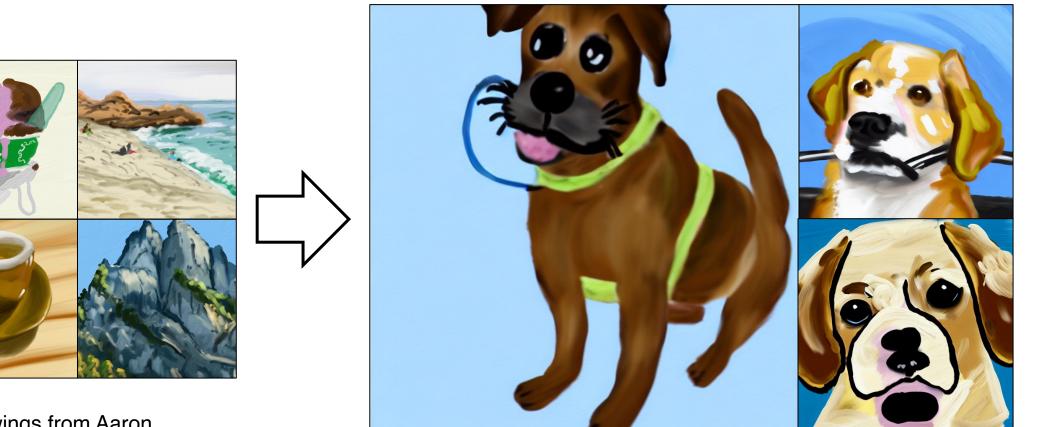


A watercolor painting of V* tortoise plushy on a mountain

Single concept results

V* table and an orange sofa

Results: specific art style

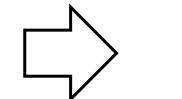


Painting of dog in the style of V* art

Drawings from Aaron Hertzmann

Multiple new concepts?

╋

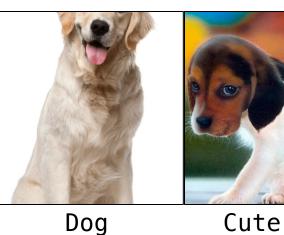


Joint training

1. Combine the training dataset of multiple concepts

V* dog

Moongate



Cute dog

Wisdom moon Gated entry

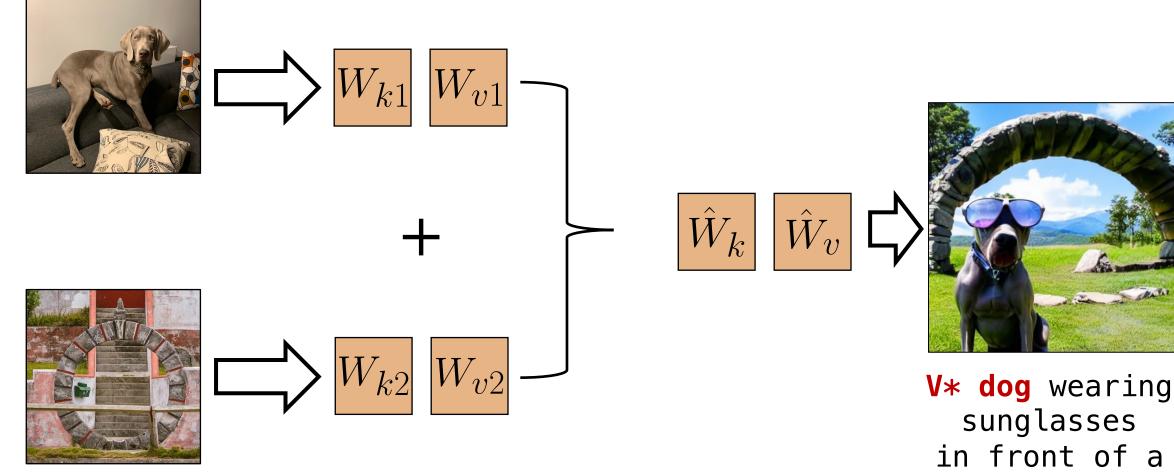
Joint training

Requires re-training for each choice of composition

100 concepts -> 4950 combinations of two concepts.

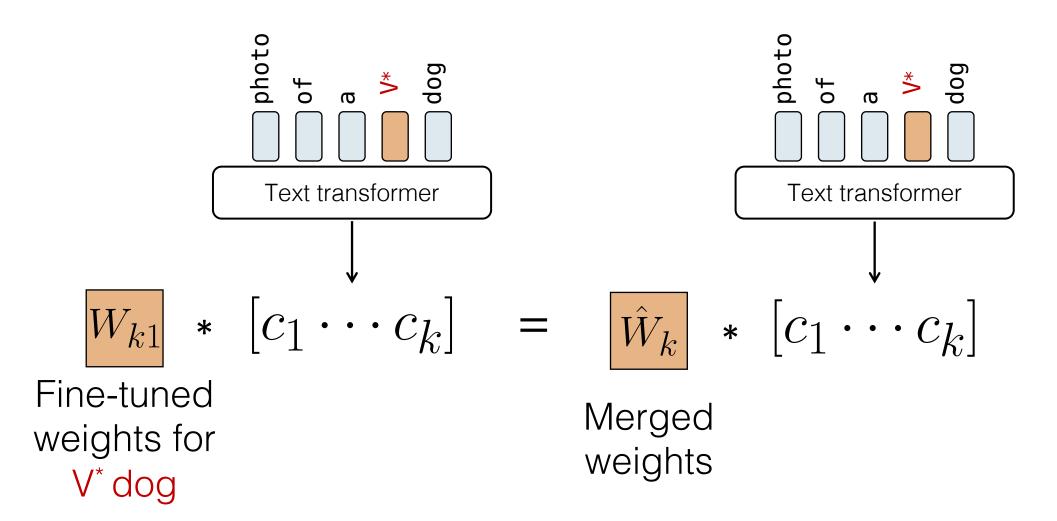
100 concepts -> 161, 700 combinations of three concepts.

Can we merge weights of individual concepts?

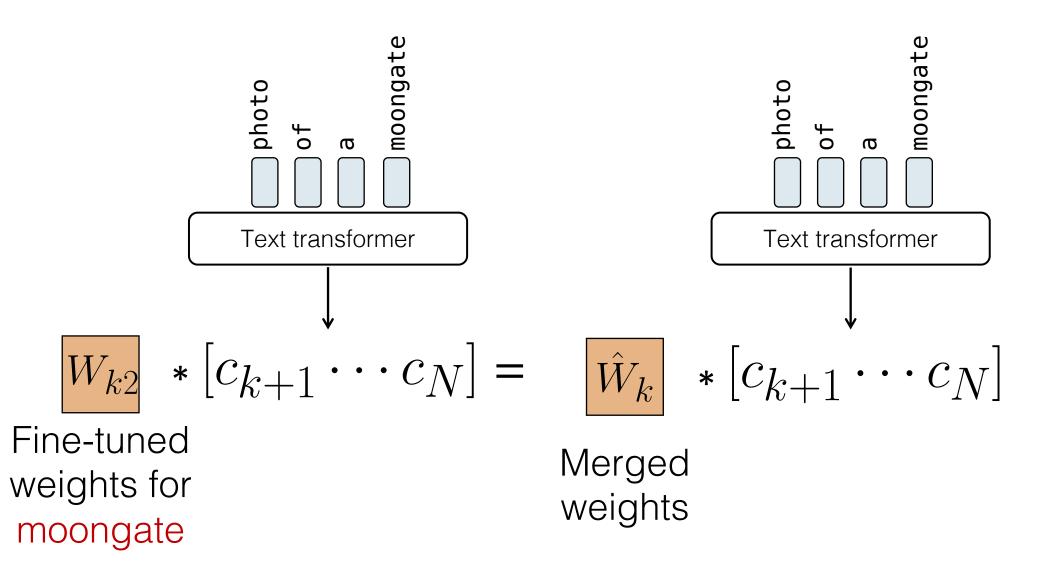


moongate

Objective function for merging weights



Objective function for merging weights



Constrained least square problem

Stay close to pretrained weights W_0 for random text prompts C_{reg} .

$$\hat{W} = \arg\min_{W} ||WC_{\text{reg}}^{\top} - W_0C_{\text{reg}}^{\top}||_F$$

s.t.
$$\hat{W}[c_1 \cdots c_N] = [W_1c_1 \cdots W_2c_N]$$

C: target prompts, e.g., {photo of a V* dog, photo of moongate}

Constrained least square problem

Constrained least square problem

$$\hat{W} = \arg\min_{W} ||WC_{\text{reg}}^{\top} - W_0C_{\text{reg}}^{\top}||_F$$
s.t.
$$\hat{W}[c_1 \cdots c_N] = [W_1c_1 \cdots W_2c_N]$$

Constrained least square problem

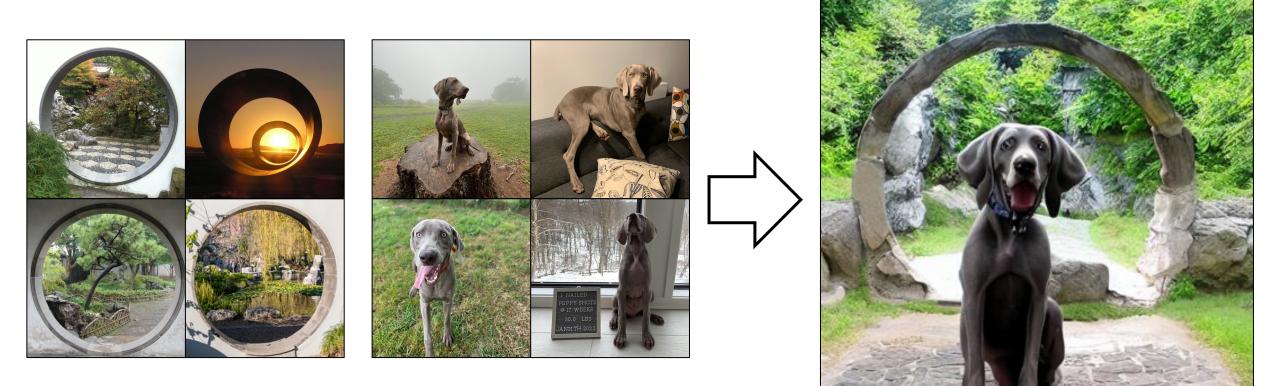
Constrained least square problem

$$\hat{W} = \underset{W}{\arg\min} ||WC_{\text{reg}}^{\top} - W_0C_{\text{reg}}^{\top}||_F$$

s.t.
$$\hat{W}[c_1\cdots c_N] = [W_1c_1\cdots W_2c_N]$$

Close-form solution for solving for W and v,

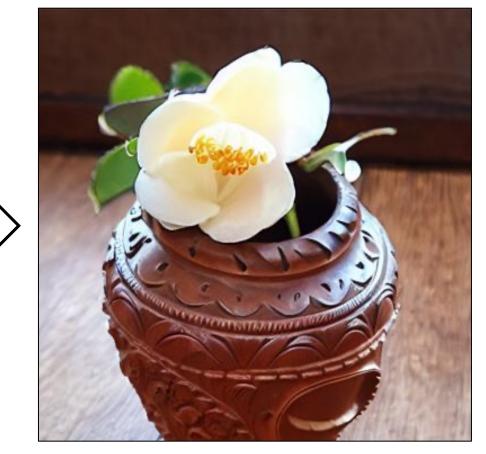
$$\hat{W} = W_0 + \mathbf{v}^{\top} \mathbf{d}$$
, where $\mathbf{d} = C(C_{\text{reg}}^{\top} C_{\text{reg}})^{-1}$
and $\mathbf{v}^{\top} = (V - W_0 C^{\top}) (\mathbf{d} C_{[\text{Nupur Kumari et al., CVPR 2023]}}^{\top}$



V₁* dog in front of moongate

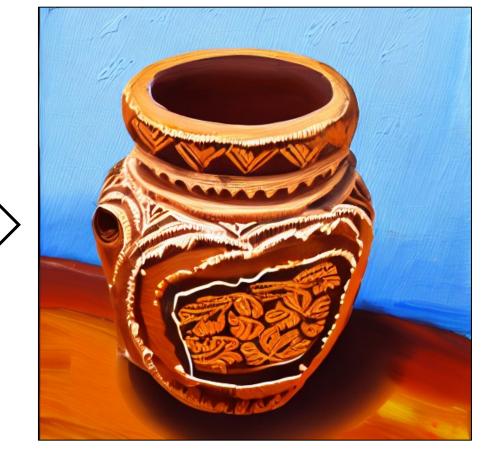
The V_1^* cat is sitting inside a V_2^* wooden pot and looking up

 V_1^{\ast} chair with the V_2^{\ast} cat sitting on it near a beach



 V_1^* flower in the V_2^* wooden pot on a table

Drawings from Aaron Hertzmann



V1* art style painting
 of V2* wooden pot

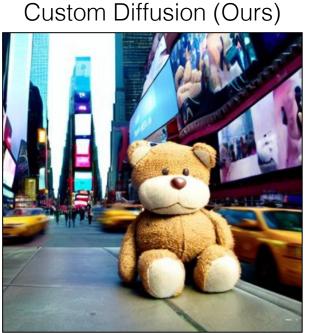
Qualitative comparison (single-concept)

Target Images

V* teddybear in Times Square??

Qualitative comparison (single-concept)

Target Images



DreamBooth

Textual Inversion

V* teddybear in Times Square

Qualitative comparison (multi-concept)

Target Images

Custom Diffusion (Ours)

 DreamBooth

Textual Inversion

 V_1^* flower in the V_2^* wooden pot on a table

Limitations

Ours

 V_1^* dog and a V_2^* cat playing together

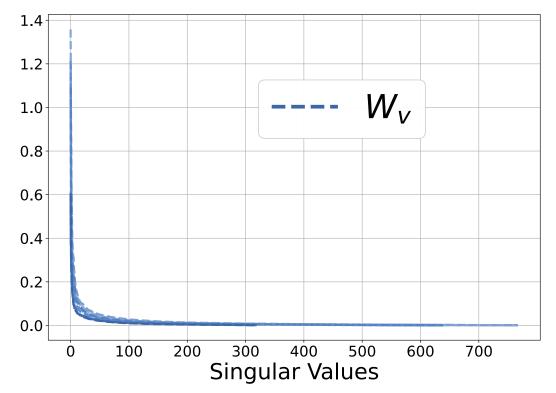
Pretrained model

dog and a cat
playing together

Memory requirement

Each custom diffusion model: 75MB storage

Analyze the difference in pretrained and fine-tuned weights



Compressing fine-tuned weights

0.1MB

0.08MB

Target image

Custom Diffusion

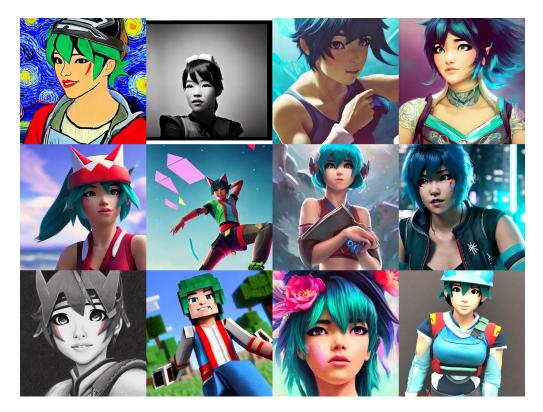
Top 20% rank

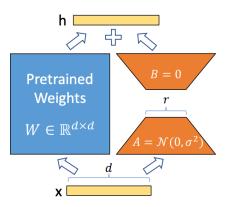
1 Rank

0 Rank

Low-rank Adaptation (Lora)

• Lora: Low-rank adaptation of large language models

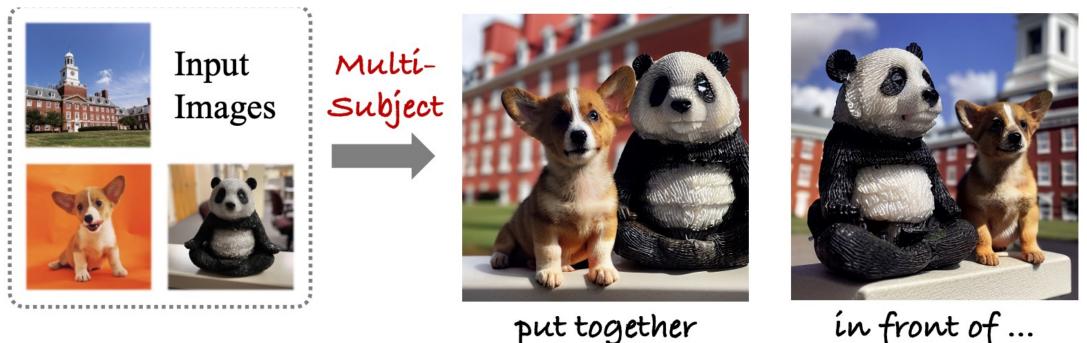




Original weights $W = \overset{\downarrow}{W_0} + \overset{\downarrow}{BA}_{\overset{\uparrow}{1}}_{\text{Low-rank difference}}$

Lora [Edward J. Hu*, Yelong Shen*, et al., ICLR 2022] Lora + Dreambooth (by Simo Ryu): https://github.com/cloneofsimo/lora

Low-rank Adaptation (SVDiff)



in front of ...

Composing multiple concepts

 $\Sigma_{\delta'} = \operatorname{diag}(\operatorname{ReLU}(\sigma + \delta_1 + \delta_2)).$

SVDiff [Han et all., ICLR 2022]

Low-rank Adaptation (Rank-1)

- Rank-1 Model Editing
- Used in GAN fine-tuning [Bau et al., 2020] and LLM factual editing [Meng et al., 2022]

$$\hat{W} = W + \Lambda (C^{-1} \boldsymbol{i}_*)^T.$$

$$\Lambda = (\boldsymbol{o}_* - W \boldsymbol{i}_*) / [(\boldsymbol{i}_*^T (C^{-1})^T \boldsymbol{i}_*)]$$

Please see their paper for more details including key lock

Perfusion [Tewel et all., SIGGRAPH 2023]

Optimization is too Slow!

Encoder-based Methods

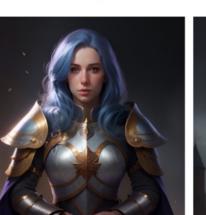
Image Prompt Adapter (IP-Adapter)

Image prompt

no text

blue hair

riding a horse

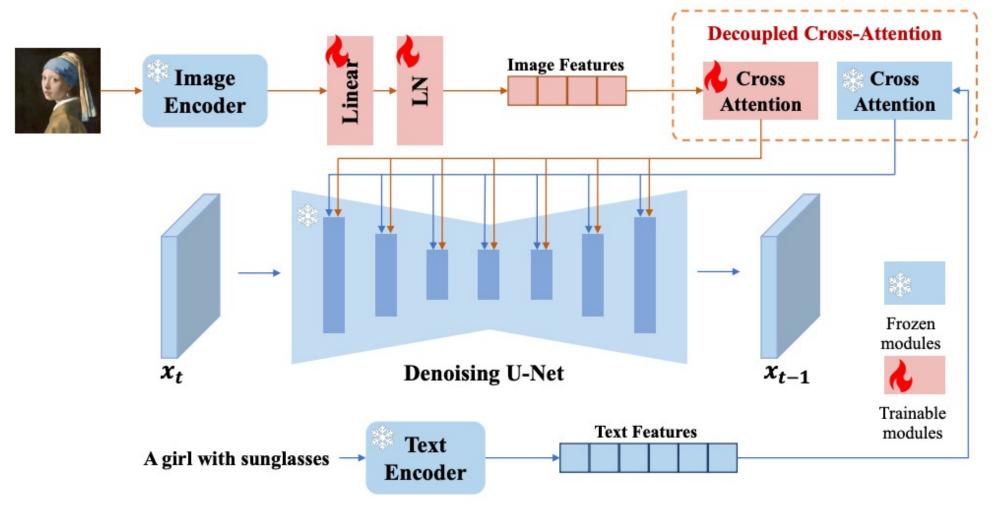


swimming in the water

in a dog house

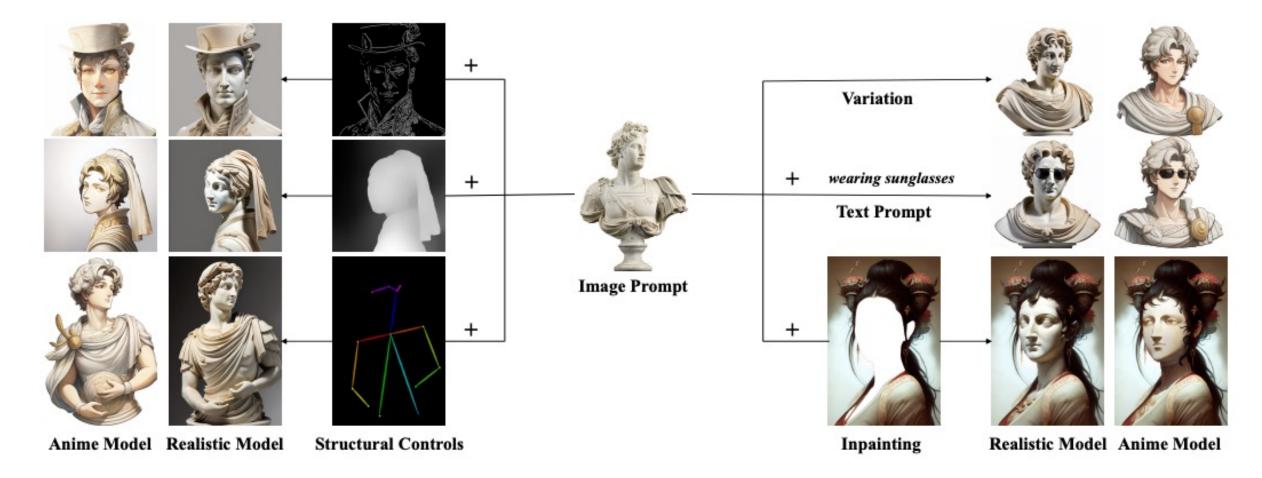
[He Yu et al., CVPR 2024]

Image Prompt Adapter (IP-Adapter)



[He Yu et al., CVPR 2024]

Image Prompt Adapter (IP-Adapter)



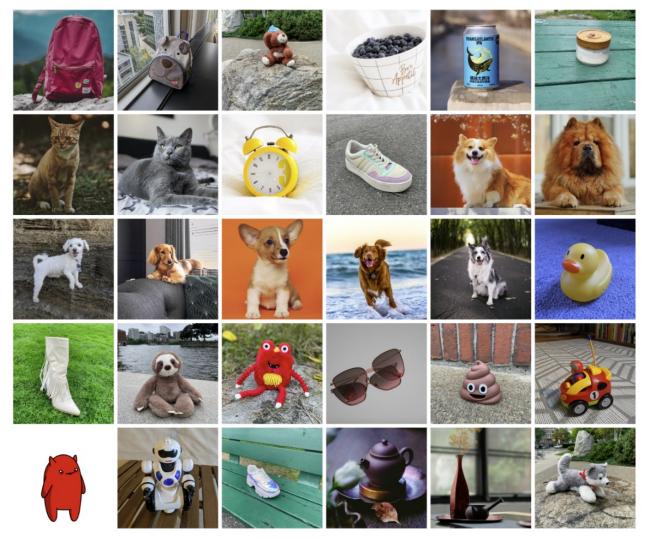
[He Yu et al., CVPR 2024]

Optimization + encoder (5-15 steps)

[Rinon Gal et al., arXiv 2023]

Datasets

DreamBooth Dataset: 30 subjects



[Nataniel Ruiz et al., CVPR 2023]

CustomConcept101: 101 concepts

