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Large-scale Text-to-Image Models

“A teddy bear on a skateboard 
in Times Square.”

“teddy bears mixing sparkling 
chemicals as mad scientists in a 
steampunk style”

Diffusion models
(DALL-E 2, Imagen, SD)

Autoregressive models
(Image GPT, Parti)

A photograph of the inside of a subway train. 
There are raccoons sitting on the seats. One of 
them is reading a newspaper. The window shows 
the city in the background.

GANs, Masked GIT
(GigaGAN, MUSE)



Limitations of Text-to-Image Models

“A teddy bear on a skateboard 
in Times Square.”

Linguistic bottleneck: not everything can be described by text

Data bottleneck: many things are not included in the dataset:
  
1. Not in the public domains (e.g., personal concepts)
2. Have not been created (e.g., new concepts)



Text-to-image isn’t perfect… Stable 
Diffusion

Photo of a moongate
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Text-to-image isn’t perfect…



Customization Stable 
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Customization Customized
Diffusion

Actual moongate images

Photo of a moongate



Unseen contexts Customized
Diffusion

Actual moongate images

Moongate in the middle of highway



Unseen contexts Customized
Diffusion
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Moongate in snowy ice



Unseen contexts Customized
Diffusion

Actual moongate images

A puppy in front of Moongate



No knowledge of 
personal concepts

Stable 
Diffusion

A dark grey color weimaraner dog 

My dog, Stark



V* dog wearing sunglasses

Customized
Diffusion

Jun-Yan’s dog, Stark

Customization



Multiple concepts Customized
Diffusion

V* dog wearing sunglasses in front of moongate

Jun-Yan’s dog, Stark
Actual moongate images



Diffusion Model Quick Recap
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Which parts shall we customize?



Textual Inversion: Optimizing Text Embedding

[Rinon Gal et al., ICLR 2023]
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[Rinon Gal et al., ICLR 2023]

Textual Inversion: Optimizing Text Embedding

GANs inversion [Zhu et al., 2016] and soft prompting [Lester et al., 2021] 

v∗ = argmin
v

Eϵ,x,c,t[||ϵ−ϵθ(xt, c, t)||2]



[Rinon Gal et al., ICLR 2023]

Textual Inversion Results



[Rinon Gal et al., ICLR 2023]

Textual Inversion Results



Works well for artistic styles

[Rinon Gal et al., ICLR 2023]



Cannot preserve object identity

Target images S* cat swimming in a pool

[Rinon Gal et al., ICLR 2023]



How to improve 
identity preservation?



DreamBooth: Fine-tuning all the weights

[Nataniel Ruiz et al., CVPR 2023] 

∆θ∗ = argmin
∆θ

Eϵ,x,c,t[||ϵ−ϵθ(xt, c, t)||2]

where θ = θ0 +∆θ

Training Objective

Issues (Overfitting)
• Forget to generate subjects of the 
    same class (e.g., dog)
• Reduce output diversity

Regularization
• Add synthetic images of the same class.

Inspired by single-image GAN fine-tuning 
GANPaint [Bau et al., 2019], PTI [Roich et al., 2021]



DreamBooth Results

[Nataniel Ruiz et al., CVPR 2023] 



DreamBooth Results

[Nataniel Ruiz et al., CVPR 2023] 



DreamBooth Applications

[Nataniel Ruiz et al., CVPR 2023] 



DreamBooth vs. Textual Inversion

[Nataniel Ruiz et al., CVPR 2023] 



Fine-tuning all model weights

Photo of a moongate Moongate in snowy ice

Storage requirement. 4GB storage for each fine-tuned model. 
Compute requirement. It requires more VRAM/training time.
Compositionality. Hard to combine multiple models.
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Only fine-tune cross-attention layers

Text transformer
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Trainable Frozen [Nupur Kumari et al., CVPR 2023]

∆W ∗

k ,∆W ∗

v = arg min
∆Wk,∆Wv

Eϵ,x,c,t[||ϵ− ϵθ(xt, c, t)||2]



Generated samples for target concept

Fine-tuned ModelPretrained Model

Photo of a moongate



Generated samples for similar concepts

Fine-tuned ModelPretrained Model

Photo of a moon



How to prevent overfitting?

Photo of a 
{moongate}

Photo of a 
{moongate}

. . .
Target images

+
sky full of stars 

and the moon Blood moon

. . .
Add regularization images



Generated samples for similar concepts

Fine-tuned ModelPretrained Model

Photo of a moon



Generated samples for similar concepts

Fine-tuned ModelPretrained Model

Photo of a moon



Personalized concepts

Jun-Yan’s dog, Stark

V* dog

Where V* is a modifier token in 
the text embedding space

How to describe personalized 
concepts? 

[Nupur Kumari et al., CVPR 2023]

Proposed by Textual Inversion [Rinon Gal et al.]



Also fine-tune the modifier token V* that describes the personalized 
concept

Text transformer
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Personalized concepts

[Nupur Kumari et al., CVPR 2023]



Single concept results

V* dog wearing headphones



Single concept results

A watercolor painting of V* 
tortoise plushy on a mountain



Single concept results

V* table and an orange sofa



Results: specific art style

Painting of dog in the style 
of V* art

Drawings from Aaron 
Hertzmann



Multiple new concepts?

+ ? 



Joint training

1. Combine the training dataset of multiple concepts
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Joint training

Requires re-training for each choice of composition 

100 concepts -> 4950 combinations of two concepts.

100 concepts -> 161, 700 combinations of three concepts. 
 



Wk2

Wk1

Can we merge weights of individual concepts?

Wv1

Wv2 V* dog wearing 
sunglasses

in front of a 
moongate

+ Ŵk Ŵv



Fine-tuned 
weights for 

V* dog

Wk1

Objective function for merging weights

Ŵk
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[Nupur Kumari et al., CVPR 2023]



Fine-tuned 
weights for 
moongate

Objective function for merging weights
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Constrained least square problem

s.t. Ŵ [c1 · · · cN ] = [W1c1 · · ·W2cN ]

: target prompts, e.g., {photo of a V* dog, photo of moongate}C

Stay close to pretrained weights 𝑊!	 for random text prompts 𝐶"#$. 

[Nupur Kumari et al., CVPR 2023]



Constrained least square problem

s.t. Ŵ [c1 · · · cN ] = [W1c1 · · ·W2cN ]

Constrained least square problem

[Nupur Kumari et al., CVPR 2023]



Constrained least square problem

s.t. Ŵ [c1 · · · cN ] = [W1c1 · · ·W2cN ]

Constrained least square problem

Close-form solution for solving for W and v,

[Nupur Kumari et al., CVPR 2023]



V1* dog in front of 
moongate

Two concept results



The V1* cat is sitting 
inside a V2* wooden pot 

and looking up

Two concept results



V1* chair with the V2* cat 
sitting on it near a beach

Two concept results



V1* flower in the V2* 
wooden pot on a table

Two concept results



Drawings from Aaron 
Hertzmann V1* art style painting 

of V2* wooden pot

Two concept results



Qualitative comparison (single-concept)

V* teddybear in 
Times Square??

Target Images



Qualitative comparison (single-concept)

V* teddybear in Times Square

Custom Diffusion (Ours) DreamBooth Textual InversionTarget Images



V1* flower in the V2* wooden pot on a table

Custom Diffusion (Ours) DreamBooth Textual InversionTarget Images

Qualitative comparison (multi-concept)



Limitations

dog and a cat 
playing together

Pretrained model

V1* dog and a V2* cat 
playing together

Ours



Memory requirement

Each custom diffusion model: 75MB storage

Analyze the difference in pretrained and fine-tuned weights



Compressing fine-tuned weights

Target image Top 20% rank

15MB

Custom Diffusion

75MB

1 Rank

0.1MB

0 Rank

0.08MB



Low-rank Adaptation (Lora)
• Lora: Low-rank adaptation of large language models

Lora [Edward J. Hu*, Yelong Shen*, et al., ICLR 2022]
Lora + Dreambooth (by Simo Ryu): https://github.com/cloneofsimo/lora

Original weights

Low-rank difference



Low-rank Adaptation (SVDiff)
• Optimizing weights in SVD space (singular values)

• Composing multiple concepts

SVDiff [Han et all., ICLR 2022]



Low-rank Adaptation (Rank-1)
• Rank-1 Model Editing
• Used in GAN fine-tuning [Bau et al., 2020] and 
   LLM factual editing [Meng et al., 2022]

Perfusion [Tewel et all., SIGGRAPH 2023]

Please see their paper for more details including key lock



Optimization is too Slow!



Encoder-based Methods



Image Prompt Adapter (IP-Adapter)

[He Yu et al., CVPR 2024] 



Image Prompt Adapter (IP-Adapter)

[He Yu et al., CVPR 2024] 



Image Prompt Adapter (IP-Adapter)

[He Yu et al., CVPR 2024] 



Optimization + encoder (5-15 steps)

[Rinon Gal et al., arXiv 2023] 



Datasets



DreamBooth Dataset: 30 subjects

[Nataniel Ruiz et al., CVPR 2023] 



CustomConcept101: 101 concepts

[Nupur Kumari et al., CVPR 2023] 


